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Course objectives

1. Review practitioners’ toolbox for
income distribution analysis

2. Focus on tools to help “explain” change
over time or differences across
populations

» some well-known tools (index
decomposition methods)

» some less well-known tools
(‘distribution regression’ approaches)

3. Implementation in LIS ...
4. ... with Stata

“Learn how to fish” approach:
cover methods and tools—“how?” rather

than “what?”



Analysis of distributional change

– Large literature on income distribution trends (over time): e.g., what drives
increases in inequality in country X?
(e.g., Hyslop and Maré, 2005, Daly and Valletta, 2006, Fiorio, 2011, Biewen and
Juhasz, 2012, Larrimore, 2014, Belfield et al., 2017)

– Fairly large literature on differences in income distributions aross groups: e.g., by
gender or ethnicity (e.g., Butcher and DiNardo, 2002, Arulampalam et al., 2007)

– Smaller literature on cross-national differences in income distributions: why is there
more inequality in country A than in country B?
(e.g., Bourguignon et al., 2008, Sologon et al., 2021)



Gini coefficients in rich countries since 1980 (LIS)
(disposable income)



What is driving distribution differences?
The smoking guns

– Demography: population composition (ageing, immigration), household formation
(declining hh size, fertility, assortative mating)

– Employment, human capital and labour market structure (female LFP, industrial
change)

– LM returns and wages, self-employment
– Non-labour (market) incomes (capital income)
– Taxes and benefit policies



What is driving distribution differences?
Deeper layers

– Preferences for redistribution?
– Social norms?
– Institutions?
– Economic structures?
– Path-dependence and adaptation?
– ...



Two main approaches: the ‘classics’ and the ‘moderns’
The ‘classics’

– exploit decomposition properties of inequality or poverty measures
– by subgroup: population partition and contribution of ‘between groups’ and ‘within

groups’ inequality and population shares

I = Φ
({
Ik, sk,µk

}K
k=1

; IB
)

– by income source: contribution of ‘source inequality’, size of source and correlation
among sources

I = φ
({
Ik, sk, ρk

}K
k=1

)
– nicely additive only for particular measures
– contribution to change over time in those indicators is easily assessed from there

(see, e.g. Mookherjee and Shorrocks, 1982, Jenkins, 1996, Belfield et al., 2017)
– difficult to handle multiple explanatory factors



Two main approaches: the ‘classics’ and the ‘moderns’

The ‘moderns’
– “generalized Oaxaca-Blinder” decompositions of distribution difference
– based on a (semi-)parametric statistical representation of the distributions of

interest
» reweighting techniques, distribution regression, and some ad hoc simulations
» not of particular functionals thereof—not ‘index specific’

– construction of ‘what if’/simulated/counterfactual distributions
» “what if such or such factor had not changed?”

– combination of factors related to differences in sources and population subgroups



Basic distribution analysis toolkit: Quick reminder

Decomposition approaches

Modelling distributions: reweighting and distribution regression methods



Kernel density estimates
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A ‘continuous’ version of the
histogram: the density
function

For kernel density
estimation, can think of
histogram with moving
window

�f(y) = 1
n

∑n
i=1

1
hK
(
yi−y
h

)
(where K is a kernel
function and h a bandwidth)



The cumulative distribution function (CDF)
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The quantile function
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The CDF reversed:
Q(p) = F−1(y)

Q(p) = inf {y : p 6 F(y)}

cf. “Pen’s parade of giants
and dwarves”



The Lorenz curve
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If data are ordered by
income:
y1 6 y2 6 ... 6 yN then

L(p) =
∑Np
i=1
yi∑N

i=1
yi

with

0 6 p 6 1

Also,
L(p) = 1

µ

∫F−1(p)
0 xf(x)dx

L ′(p) =
Q(p)
µ



Lorenz curve and the Gini coefficient

Gini: .341
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The Gini coefficient is equal
to twice the area between
the 45 degree line and the
Lorenz curve:
G = 1− 2

∫
L(p)dp

Equivalently:
G =
1− 1

N

∑N
i=1 2(1− F(yi))

yi
µ

Or:
G =

2Cov(y,F(yi))
µ

Or:
G =

1
2N2µ

∑N
i=1

∑N
j=1 |xi − xj|



Other common summary statistics

– Variance, σ2: 1
N−1

∑N
i=1(yi − µ)

2

– Coefficient of variation, CV:
√
σ2

µ

– Inter-quintile ratio, P80/P20 (or inter-quartile P75/P25): Q(0.80)
Q(0.20)

– Income share ratios S80/S20: ratio between cumulative income of the richest 20%
to cumulative income of poorest 20%; (1−L(0.80))

L(0.20)

– Top income shares (top 10%, 5%, 1%, 0.1%, ...)



Theil, mean log deviation and generalized entropy measures

Another popular family of inequality measures is the generalized entropy

Theil = GE1 = E

(
y

µ
ln
y

µ

)
=

1

µ
E (y lny) − lnµ

MLD = GE0 = E

(
ln
µ

y

)
= lnµ− E (lny)

GEα =
1

α(α− 1)

(
E (yα)

µα
− 1

)
Note that GE2 =

1
2
(CoV)2

Responsive to low income with low α and to high incomes with high α



Poverty
– Focus on lower tail of the distribution
– examine a “censored” distribution of income shortfalls below a poverty threshold:

gi = max

(
z− yi
z

, 0

)
– Tools reviewed for inequality and welfare carry through to analysis of censored

distribution (with obvious adaptation)
– The ‘Foster-Greer-Thorbecke’ (FGT) index (Foster et al., 1984)

PFGT
α =

1

N

N∑
i=1

gαi

with headcount ratio as special case α = 0,

H =
1

N

N∑
i=1

I(yi 6 z) = F(z)



Basic distribution analysis toolkit: Quick reminder

Decomposition approaches
Decomposition by income sources
Decompositions by population characteristics

Modelling distributions: reweighting and distribution regression methods
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Inequality contribution of income sources

Household income is the sum of market income (incl. employment and self-employment
incomes of all members, capital income), public transfers, pensions minus taxes and
social security contributions

Net worth is the sum of various assets types minus liabilities

What is the contribution of different components to inequality?

Does capital income increase inequality? Do transfers reduce it? By how much? What
is the contribution of housing wealth? etc.



Decomposition by factor components

– The Shorrocks (1982a,b) rule

Sj =
Covj

V
= ρj

µj

µ

CVj

CV

where ρj is the correlation between total incomes and income source j

– Valid for ‘any’ inequality measure (choice of decomposition rule independent on
index)



Decomposition of Gini coefficient

– Estimate the contributions to Gini coefficient (using concentration coefficient)

– Lerman and Yitzhaki (1985)

G =

K∑
j=1

µj

µ
Cj

where Cj is the Concentration coefficient of source j on between total incomes and
income source j

– Concentration coefficient of source j can itself be expressed as product of Gini of
source j and ‘Gini correlation’ between source j and total income

Cj = Gjρ
G
j

(Gini correlation is correlation between a household’s income from source j and
their rank in the distribution of total income)



Examining contribution to change

– Analysis of change:

∆G =

K∑
j=1

s0j∆Cj +

K∑
j=1

∆sjC
1
j

with stj =
µtj
µt

the share of source j at time t and ∆Cj = ∆Gjρ0j +G
1
j∆ρj

– beware of index number issue



Alternative approaches: ‘shutting off’ sources

Alternative methods applicable to any generic measure consist in ‘shutting off’ sources
(or inequality in given sources)

– Set all yij = 0 for source j and recalculate inequality measures of interest
– Similarly, could set all yij = 	yj and recalculate inequality measures of interest
– Impact of source j given by I(Y) − I(Y \ {yj})

– not a decomposition! Sum over j does not lead to I(Y)
=⇒ Shapley decomposition



Shapley decomposition (Chantreuil and Trannoy, 2013, Shorrocks, 2013, Chantreuil et al.,

2019)

In fact, effect of shutting off source j can be calculated for any other reference value for
other sources (turned on or off)

Shapley value averages impact of shutting off source j over all possible sequences

– 2J possible combinations of sources (‘coalitions’; e.g. with three sources: (L,K,T),
(L,K), (K,T), (L,T), (L), (K), (T), ())

– Four possible marginal values, e.g., for source L: I(L,K, T) − I(K, T),
I(L,K) − I(K), I(L, T) − I(T), I(L) − I()

– Beware: weighted average so that each ‘coalition size’ receives equal weight

Cj =
∑

S⊂J,j∈S

!(s− 1)!(J− s)

!J
(I(S) − I(S \ yj))

– exact decomposition: I =
∑
j∈JCj and no dependence on sequence



Outline

Basic distribution analysis toolkit: Quick reminder

Decomposition approaches
Decomposition by income sources
Decompositions by population characteristics

Modelling distributions: reweighting and distribution regression methods
Reweighting methods
Distribution regression methods

Modelling conditional distributions
Simulating counterfactual distributions



Between- and within-group inequality

How do income differences between and within groups combine to shape the overall
level of inequality? (Shorrocks, 1984)

– Partition the population into groups, e.g.,
» urban vs. rural or other geography
» age groups
» gender, industries, household types, etc.

– Within-group inequality is as described so far, but assessed in a subgroup
– Between-group inequality

» inequality if individuals have the average income in their group



Between- and within-group inequality

– In general cannot write I(Y) as additive function of between group inequality and
within group inequality

– ... except for a particular family of inequality measures, the Generalized Entropy
family:

GE(α) = GEB(α) +

K∑
k=1

vαks
1−α
k GEk(α)

where vk and sk are subgroup k shares of total income and population respectively,
GEk(α) is inequality in subgroup k and GEB(α) is between group inequality
obtained by assuming everyone in a group obtains the group mean income

» GE(α) = 1

α−α2

(
1−
∫
( x
µ
)αf(x)dx

)



Gini coefficient

– The Gini coefficient is not exactly additively decomposable

GINI = GINIB(Y∗) + GINIW + R

with

GINIW =

K∑
k=1

vkskGINI
(k)

– GINIB(Y∗) is defined as for the GE decomposition as the inequality if all agents
received their subgroup mean income.

– The term R(Y) depends the degree of overlap between the income range of the
different subgroups. (Reflects difference between ranks in own group distribution
and in overall distribution.)



Poverty decompositions

FGT indices of poverty are, of course, easy to decompose

FGT(α) =

K∑
k=1

skFGTk(α)

(assuming a common poverty line)



Multivariate approaches

– In principle, we can combine multiple variables, but cells quickly become too small
(need relatively large number of observations to estimate inequality measures)

– Smoothing techniques? (to estimate subgroup distributions or subgroup inequality
measures)—interpretation of ‘within inequality’ becomes somewhat fuzzy

– Morduch and Sicular (2002)’s simple OLS strategy (see below)
– Explicit models for conditional distributions and estimation of “partial” effects



Regression components as income sources Morduch and Sicular (2002), Fields

(2003), Cowell and Fiorio (2011)

– Step 1: regress income on variables of interest

y = α+ β1x1 + β2x2 + ...+ e

– Step 2: apply inequality decomposition by source where the sources are βjxj and e
– Contribution of component depends on β and variation in x
– See Cowell and Fiorio (2011) for the links between this and the between-group

decomposition
– But often most of the contribution is in the residual e...
– ... sensitive to specification (and interpretation gets complicated with interaction

terms)



Some Stata (user-written) routines

ineqfac Ineq decomp by source (Shorrocks rule)
sgini, descogini Gini decomp by source
ineqdeco GE decomp by subgroup
povdeco FGT decomp by subgroup
ineqrbd, gfields Morduch-Sicular regression-based decomp
anogi Gini decomp by subgroup
msdeco Mookherjee-Shorrocks contribution of groups to change



Basic distribution analysis toolkit: Quick reminder
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Examine PDFs directly (Jenkins and Van Kerm, 2005)
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Source: Calculations from EU-SILC

Luxembourg 2012
Often useful to examine PDFs (or CDFs
directly)

f(y) =

K∑
k=1

skf
(k)(y)

F(y) =

K∑
k=1

skF
(k)(y)

where f(k) and F(k) are the PDF and the
CDF of incomes in group m respectively.

Use logarithmic scale for income (to
visualize relative differences)



Contribution to differences
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Decomposition
Difference between two PDFs

∆(1,2)f(y) ≡ f2(y) − f1(y)

The contribution of differences in population composition to ∆(1,2)f(y) can be trivially
expressed as

∆(1,2)f(y) ≡ f2(y) − f1(y)

=

K∑
k=1

(
s2kf

2
k(y) − s

1
kf

1
k(y)

)
=

(
K∑
k=1

(
s2k − s

1
k

)
f1k(y)

)
︸ ︷︷ ︸

composition

+

(
K∑
k=1

s2k
(
f2k(y) − f

1
k(y)

))
︸ ︷︷ ︸

subgroup distribution

– Each of the terms in the decomposition can be easily calculated (provided K small
enough relative to sample size)



Many or continouous variables?
Estimation of the components unproblematic when the set is small (and discrete)
With large dimension and/or continuous X, estimation of both the shares and the
densities becomes difficult. Solution: reweighting and ‘distribution regression’
Express f(m)(y) in terms of conditional distributions given covariates X

f(m)(y) =

∫
ΩX

f(m)(y|X)g(m)(X)dX

How much of ∆f(1,2)(y) (for any y) is due to differences in f(m)(y|X) and how much is
due to differences in g(m)(X)

∆f(1,2)(y) =

(∫
ΩX

f(2)(y|X)g(2)(X)dX−

∫
ΩX

f(2)(y|X)g(1)(X)dX

)
︸ ︷︷ ︸

composition di�erences

+

(∫
ΩX

f(2)(y|X)g(1)(X)dX−

∫
ΩX

f(1)(y|X)g(1)(X)dX

)
︸ ︷︷ ︸

conditional distribution di�erences
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Reweighting principle

Define the ‘reweighting function’ as ratio of density of covariates

ψ(1,2)(X) =
g(1)(X)

g(2)(X)

Inserting ψ(1,2)(X) in the PDF decomposition gives

∆f(1,2)(y) =

(∫
ΩX

f(2)(y|X)g(2)(X)dX−

∫
ΩX

ψ(1,2)(X)f(2)(y|X)g(2)(X)dX

)
︸ ︷︷ ︸

composition di�erences

+

(∫
ΩX

ψ(1,2)(X)f(2)(y|X)g(2)(X)dX−

∫
ΩX

f(1)(y|X)g(1)(X)dX

)
︸ ︷︷ ︸

conditional distribution di�erences



Estimation of components (ctd.)

Weighted kernel density estimators:

f(m)(y) =

∫
ΩX

f(m)(y|X)g(m)(X)dX =
1

N(m)

∑
i∈S(m)

1

h
K

(
y− yi
h

)

and ∫
ΩX

ψ(1,2)(X)f(2)(y|X)g(2)(X)dX =
1

N(2)

∑
i∈S(2)

ψ(1,2)(Xi)

h
K

(
y− yi
h

)

No estimation of conditional distributions anymore!



Estimation of components (ctd.)
Call upon Bayes’ rule and binary choice models

Express reweighting function, using Bayes’ rule, as

ψ(1,2)(X) =
Pr[m = 1|X]

Pr[m = 2|X]
× Pr[m = 2]

Pr[m = 1]

where Pr[m = i|X] is probability that a randomly selected agent with characteristics X
belongs to group i. Pr[m = i] is probability that any randomly selected agent belong to
group i.

Whereas g(m)(X) is multivariate, the four terms in ψ(1,2)(X) are easy to compute.

Di Nardo et al. (1996) specify simple single index model to estimate Pr[m = i|X] from
the pooled population (logit or probit). Barsky et al. (2002), Firpo and Pinto (2016) adopt
a more flexible non-parametric approach (cf. estimation of propensity score in matching
methods (Hirano et al., 2003))



Common support restriction

Problem if some covariate combinations do not exist in one of the two populations.

– Case 1: g(1)(X) = 0 for some X, then ψ(1,2)(X) = 0

» No big deal—that subgroup is ignored

– Case 2: g(2)(X) = 0 for some X, then ψ(1,2)(X) =∞!
» We cannot ‘standardize’ population 2 to population 1 characteristics because no

matching observations

=⇒ Take reference population as the ‘most compact’ or take alternative reference
population (pooled population)

(milder version of the problem when g(2)(X) ≈ 0 and reweighting factor gets very large:
estimation unstable)



Separating different covariates
Say, X = {Z,W}

We have
g(m)(W,Z) = g(m)(W|Z)× h(m)(Z)

and

f(m)(y) =

∫
ΩZ

∫
ΩW

f(m)(y|W,Z)g(m)(W|Z)h(m)(Z)dWdZ.

A sequence of counterfactual distributions can now be constructed:∫
ΩZ

∫
ΩW

f(2)(y|W,Z)g(2)(W|Z)h(1)(Z)dWdZ

and ∫
ΩZ

∫
ΩW

f(2)(y|W,Z)g(1)(W|Z)h(1)(Z)dWdZ



Separating different covariates

Define

ψ
(1,2)
I (Z) =

h(1)(Z)

h(2)(Z)

ψ
(1,2)
II (W,Z) =

g(1)(W|Z)

g(2)(W|Z)

So ψ(1,2)(W,Z) = ψ
(1,2)
I (Z)×ψ(1,2)

II (W,Z).

Direct estimation of the distributions h(m)(Z) is only needed for constructing ψ(1,2)
I (Z)

but given Z is a single covariate, this does not pose any problem.

If W contains a large number of covariates, ψ(1,2)
II (W,Z) can be estimated by applying

the Bayes’ rule as above.



Sequence issue
Shapley

One problem of this technique is the ‘index number problem’ – the position at which the
subsets of covariates are neutralized in the sequence of elimination influences their
estimated contribution.

Additionally, one could take the conditional outcome distribution of group 1 as reference
rather than group 2

Shapley value approach: estimate all possible elimination sequences and take the
average across sequence (see, e.g., Cobb-Clark and Hildebrand, 2006).



CDFs, quantiles and other functionals

Reweighting approach applies similarly for

– CDFs: replace (weighted) kernel density estimation by (weighted) empirical CDF
estimators (Bover, 2010)

– quantiles: weighted quantiles (Firpo, 2007)
– direct functionals of interest such as inequality measures (Biewen, 2001, Firpo and

Pinto, 2016)
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Distinct questions

Methods address two related but distinct questions:
1. How much does X contribute to υ(F)?

» How much can a change in some element in X affect υ(F)? (‘policy effects’)
» How much do differences in X account for differences in υ(F) between A and B

(across time, countries, gender, race, ...)?

2. How does υ(Fx) vary with X?
That is, calculate and summarize υ(Fx) (remember dim(X) > 1), ‘partial effects’)

» EOp, Intergenerational mob, Educ choices, Income risk and vulnerability, wage gap
and glass ceilings. etc.



Distinct questions
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Distribution regression

Part I:
Conditional distribution models (‘distribution regression’)

Part II:
Simulating unconditional (counterfactual) distributions



Array of estimators

Many estimators available:

– quantile regression (Koenker and Bassett, 1978)
– distribution regression (Foresi and Peracchi, 1995)
– parametric income distribution models (Biewen and Jenkins, 2005, Van Kerm et al.,

2017)
– also: duration models (Donald et al., 2000), ordered probit model (Fortin and

Lemieux, 1998)



Quantile regression
Distribution regression
Parametric models



Linear quantile regression model
Assume a particular relationship (linear) between conditional quantile and x:

Qτ(y|x) = xβτ

(Or equivalently yi = xiβτ + ui where F−1
ui|xi

(τ) = 0)

�βτ = argmin
β

∑
i

ρτ(yi − xiβ)

(Koenker and Bassett, 1978) Check function

Estimate of the conditional quantile (given linear model):

�Qτ(y|x) = x�βτ

�βτ can be interpreted as the marginal change in the τ conditional quantile for a marginal
change in x

(Stata: qreg)



Illustrative examples
Quantile regressions (Lux 2012)
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Quantile regressions (Lux 2012)



Recovering υ(Fx)

Estimation of �Qτ(y|x) for a continuum of τ in (0, 1) provides a model for the entire
conditional quantile function (quantile process) of Y given X

But we are interested in υ(Fx) not (necessarily) in the quantiles!

After estimation of the quantile process (0, 1), estimation of the distributional statistic
conditional on X is straightfoward:

– The set of predicted conditional quantile values {xi�βθ}θ∈(0,1) is a pseudo-random
draw from Fx (if grid for θ is equally-spaced) (Autor et al., 2005)

– So a simple estimator for υ from unit-record data can be used to estimate υ(FXi)



Quantile regression
Distribution regression
Parametric models



‘Distribution regression’

Fx(y) = Pr {yi 6 y|x} is a binary choice model once y is fixed (dependent variable is
1(yi < y))

Idea is to estimate Fx(y) on a grid of values for y spanning the domain of definition of Y
by running repeated standard binary choice models, e.g. a logit:

Fx(y) = Pr{yi 6 y|x}

= Λ(xβy)

=
exp(xβy)

1+ exp(xβy)

or a probit Fx(y) = Φ(xβy) or else ...
(see Foresi and Peracchi, 1995, Chernozhukov et al., 2013)
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‘Distribution regression’

– Estimation of these models is well-known and straightforward! (probit, logit)
– Faster to run than quantile regression
– Evidence that provides better fit than quantile regression (Rothe and Wied, 2013,

Van Kerm et al., 2017)
– See Chernozhukov et al. (2013) on inference



‘Distribution regression’

Drawback: Conditional statistic υ(Fx) often less easy to recover from the �FX predictions
than with quantile regression

– invert the predicted Fx to obtain predicted quantiles
– proceed as with quantiles predicted from quantile regression (see above)



Quantile regression
Distribution regression
Parametric models



Parametric distribution fitting

Assume that the conditional distribution has a particular parametric form: e.g.,
(log-)normal (2 parameters – quite restictive), Fisk (2 params), Gamma (2 params),
Singh-Maddala (3 param.), Dagum (3 param.), GB2 (4 param.), ... or any other
distribution that is likely to fit the data at hand (think domain of definition, fatness of tails,
modality)

Let parameters (say vector θ) depend on x in a particular fashion, typically linearly (up to
some transformation), e.g., θ1 = exp(xβ1), θ2 = exp(xβ2) and θ3 = xβ3

This gives a fully specified parametric model which can be estimated using maximum
likelihood.



Illustrative examples
Singh-Maddala distribution (Lux 2012)
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Outline

Part I:
Conditional distribution models (‘distribution regression’)

Part II:
Simulating unconditional (counterfactual) distributions



Inference via counterfactual distributions (Chernozhukov et al., 2013)

Analysis via counterfactual distributions is typically three-stage:

– model and estimate conditional distribution functions Fx(y) (or conditional quantile
functions)

– recover prediction for F by averaging over covariate distribution:
F(y) =

∫
Fx(y)h(x)dx

» in a sample: �F(y) = 1

N

∑N
i=1

�Fxi(y)

– Generalized Oaxaca-Blinder: simulate counterfactual distributions �F by
manipulating

» the conditional distribution functions: �F(y) =
∫
Gx(y)h(x)dx:

» the covariate distributions: �F(y) =
∫
Fx(y)g(x)dx:

» (typical analysis swaps either component across, say countries, gender, etc.)



Counterfactual distributional statistics

Simulation consists in generating a simulated sample from F on the basis of conditional
quantile estimates.

Machado and Mata (2005) algorithm:

– pick a random value θ ∈ (0, 1) and calculate conditional quantile regression for the
θ-th quantile

– select a random observation xj from the sample and calculate predicted value
Qxj = xj

�βθ

– repeat steps above B times to generate a simulated sample from F based on the
conditional quantile model

– υ(F) calculated with standard formulae from the simulated sample



Decomposition of quantile differences

Machado-Mata very computationally intensive, especially since large B required for
accurate estimation of υ(F).

Simplified version (Autor et al., 2005, Melly, 2005):

– estimate uniform (equally-spaced) sequence of conditional quantile predictions for
each observations—pseudo-random sample from the conditional distribution Fx

– stack vectors of predictions for all observations into one long vector
V—pseudo-random sample from the unconditional distribution!

Note: can obtain the conditional quantile predictions by ‘distribution regression’ or ...



Some Stata (user-written) routines

teffects ipw, dfl Reweighting approaches
counterfactual, drprocess... Quantile process counterfactual estimation
drprocess, drpredict

smfit, dagumfit... Fitting parametric distribution models
fiskfit, gb2fit with covariates



To wrap up

Extensions of ‘Oaxaca-Blinder’ techniques to income distribution and welfare measures
useful for cross-country and inter-temporal analysis of inequality—and this is what
LIS/LWS is made for!

– ‘Classic’ decompositions: easy but for specific index numbers only (and trends may
be sensitive to index used)

– ‘Modern’ (Generalized Oaxaca-Blinder) decompositions: relatively easy (albeit
computational intensive)

– Descriptive methods? Causality depends on the design of the data generating
process (not the methods)!

– Practical nuisance 1: path-dependence is pervasive (Shapley value – sensitivity
analysis)

– Practical nuisance 2: bootstrap inference may be required (and computationally
intensive)

– Practical nuisance 3: sensitivity to extreme data (beware of GE(2) and CV)!
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